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We investigate the swirling flow of liquid metal in an axisymmetric cavity of 
arbitrary profile, generated by a rotating magnetic field. In addition to the primary 
swirling motion, a recirculation is generated by the Bodewadt-like boundary layers 
on the inclined sides of the cavity. As in the classic problem of ‘spin-up’ in a cylinder, 
this secondary flow has a dominating effect over the distribution of angular 
momentum. It is shown that, in the inviscid core, the angular momentum is 
independent of z ,  the axial coordinate, and that the applied body force is balanced 
by the Coriolis force. The bulk of the streamlines pass through both the core and the 
boundary layer, picking up energy in one region and losing it in the other. By 
matching the angular momentum and recirculating mass flux in the core to that in 
the boundary layer, a single governing equation is established for the swirl 
distribution. This second-order ordinary differential equation is valid for any 
axisymmetric shape, but is solved here for two cases; those of flow in a truncated 
cylinder and in a hemisphere. The former of these is compared with previously 
published experimental data, and with a full numerical simulation. Finally, we 
extend some of these ideas to buoyancy-driven flow. Here we take advantage of the 
analogy between centrifugal and thermally stratified flows to model natural 
convection of liquid metal in a cavity. 

1. Introduction 
Suppose that a uniform, transverse magnetic field, B, permeates an axisymmetric 

cavity, and is rotated about the vertical axis of symmetry. (This is shown 
schematically in figure 1 . )  Now suppose the cavity is filled with liquid metal. At the 
most elementary level, we may regard the liquid as constituting the rotor of an 
induction motor, and so it is clear that the liquid will itself rotate, following the 
motion of the magnetic field. However, we shall see that, in addition to this swirling 
motion, a strong secondary flow is created. This flow is generated by the cavity 
boundaries, and dominates the behaviour of the liquid metal. 

There have been a considerable number of studies of magnetically induced swirl in 
cavities of varying shapes, each motivated by a particular industrial process. The 
literature is exhaustive and we shall only mention a few typical examples. Zibol’d 
et al. (1986) were concerned with swirl in a cylindrical cavity, in the context of single 
crystal growing. This problem is complicated by rotation of the walls, and they 
investigated the flow numerically. Boyarevich & Millere (1982) considered swirl in a 
hemisphere, driven by a static electric current and magnetic field. The motivation for 
this work stemmed from electric-arc welding. In  addition to an azimuthal body force, 
which induces swirl, there was a poloidal component of force, creating motion in the 

22-2 



670 P. A .  Davidson 

FIQURE 1.  The geometry under consideration. An axisymmetric cavity is filled with liquid 
metal and subjected to a rotating magnetic field. 

(r,z)-plane. As in the paper mentioned first, the study consisted essentially of 
(laminar) numerical experiments at  low Reynolds number. Swirl in a parabolic 
cavity was studied by Vlasyuk & Sharamkin (1987), motivated this time by electric- 
arc remelting of ingots. As in Boyarevich & Millere’s work, flow was induced by both 
poloidal and azimuthal body forces, generated by d.c. fields. Again, the study was 
numerical in nature, and restricted to low Reynolds numbers. The same problem was 
.also tackled by several authors in a cylindrical geometry. Typical of these studies is 
the work of Muizhnieks & Yakovich (1988). 

These investigations are complemented by a number of laboratory experiments. 
Perhaps the most comprehensive is that of Robinson (1973), who applied an (almost) 
purely azimuthal force to mercury in a truncated cylinder. We shall return to this 
paper later. A similar study was undertaken by Doronin, Dremov & Kapusta (1973). 
Finally, Vives & Perry (1988) looked a t  both natural and (magnetically) forced 
convection in a cylinder, and its influence on solidification. 

One of the aims of this paper is to provide a unified theoretical framework, within 
which these different studies may be assessed. As with Vives & Perry (1986), the 
original motivation for this work lay in the use of rotary electromagnetic stirring in 
the casting industry. A simple representation of an aluminium caster is given in 
figure 2. In essence, a solid ingot is slowly withdrawn from a liquid-metal pool, the 
pool being continuously replenished from above. During solidification, alloying 
elements tend to segregate out from the host metal, giving rise to  inhomogeneity in 
the final ingot. One means of homogenizing the melt as it solidifies is to stir the liquid 
using a rotating, horizontal magnetic field. This practice is widespread in the steel 
industry, and can also be applied to the casting of aluminium, or indeed any other 
metal. (Rotary electromagnetic stirring, as defined here, should not be confused with 
the electromagnetic casting of aluminium, in which a vertical magnetic field is used 
to support the sides of the liquid pool, obviating the need for a mould.) 

In  the case of a steel caster, the liquid metal pool is essentially a long deep cone, 
perhaps 0.3 m wide and 10 m long. Rotary magnetic stirring has been studied in this 
context by, amongst others, Davidson & Hunt (1987). In that study, the pool was 
treated as an infinitely long liquid-metal column. One important consequence of the 
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FIUURE 2. Casting of aluminium. 

great depth of the pool is that the flow is geometrically unconfined in the axial 
direction. 

In  the casting of aluminium, the pool is more hemispherical in shape, and so 
boundaries are inclined to the axis of rotation. It is this second geometry which is the 
subject of the present paper. We shall show that the geometrical confinement of the 
flow plays a key role in the dynamics. 

In  the case of a steel caster, the induced swirl chooses an axial lengthscale (i.e. axial 
penetration of the flow) which far exceeds the axial extent of the applied magnetic 
body force. It is through the choice of this lengthscale that the fluid establishes its 
equilibrium (Davidson & Hunt 1987). This is achieved when the boundary layers on 
the solid cylindrical surface have sufficient axial length for the dissipation of energy 
within these layers to counter the energy imparted to the fluid by the body force. 
However, such an undetermined lengthscale is not available to our geometrically 
confined flow. 

We may generalize this argument as follows. Let F be the time-averaged 
component of the Lorentz body force, u be the induced velocity, and u be the 
viscosity of the liquid metal. We shall consider the net energy balance in a forced, 
laminar flow (although the arguments are readily extended to turbulent flows). 
Integrating the Navier-Stokes equation around any streamline which is closed in the 
(r,  z)iplane, we find, 

$F.dr+u$V2u-dr = 0. 

This states that the energy gained by a fluid particle, by virtue of the work done by 
F, must be diffused and dissipated out of the particle by shear. However, the 
Reynolds number for these flows is invariably large (Re > lo5), so we might expect 
the second integral to be small. As Mestel (1989) pointed out, there are several ways 
that (1)  could be realized : ( a )  the streamlines align themselves such that $F- dl = 0 ; 
(b )  u scales as 1/v; (c) the streamlines (but not the force) have a characteristic length 
which scales as 1 / v ;  ( d )  every streamline passes through a singular region such as a 
viscous boundary layer. 

It seems implausible that condition ( a )  could be satisfied in the present context, 
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FIGURE 3. Coordinate system. 

and we shall not consider this further. Mestel (1989) was particularly concerned with 
flows of type ( b ) ,  induced by a rotating field in two-dimensional and axisymmetric 
geometries. One example of a flow of type (c) is the rotary stirring of steel. For the 
flow shown in figure 1, there is no undetermined global lengthscale available to the 
fluid, and (1)  must be satisfied by either option ( b )  or option (d) .  It is the premise of 
this paper that the flow defined in figure 1 is of type (d) .  That is, it is the boundary 
layers which have the controlling influence on the flow, rather than dissipation in the 
core. Clearly, this leads to a much lower velocity than that associated with option ( b ) .  

The physical mechanism by which the boundary layers control the flow may be 
explained by reference to a simpler, well-known phenomenon. Consider the text-book 
problem of ' spin-down ' of a stirred cup of tea. In this example, the main body of the 
fluid is predominantly in a state of inviscid rotation. The centrifugal force is balanced 
by a radial pressure gradient, and this radial pressure gradient is also imposed 
throughout the boundary layer on the bottom of the cup. However, the angular 
momentum of the fluid in the boundary layer is smaller than that of the core, and 
so there is a local imbalance between the imposed pressure gradient and centripetal 
acceleration. The result is a radial inflow, with the fluid eventually drifting up and 
out of the boundary layer. As each fluid particle passes through the boundary layer, 
i t  gives up a significant fraction of its kinetic energy. The tea finally comes to rest 
when all the contents of the cup have been flushed through the boundary layer. We 
shall see that a similar process occurs in our forced, swirling flow. 

We shall employ a cylindrical polar coordinate system ( r ,  8,  z ) ,  as shown in figure 
3. I n  addition, i t  is convenient to introduce a curvilinear coordinate, s, measured 
along the surface, and an angle, 4 ,  giving the local inclination of the boundary to the 
horizontal. The coordinates of the boundary are given by ( rs,  zs), and the unit normal 
and tangential vectors to the surface are n and t .  Let the maximum radius and depth 
of the pool be R, and 1 respectively, and R, be the local radius of curvature of the 
surface. 

We shall assume that the surface of the liquid metal remains flat, and acts, in 
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effect, as a plane of symmetry. In addition, we shall ignore the complications 
introduced in a caster, such as withdrawal of the ingot, flow into the top surface of 
the pool, and solidification at  the boundaries. It follows from these simplifications 
that the theory presented here is also applicable to motion in an axisymmetric, closed 
container, such as a sphere or ellipsoid. 

Electrically, we shall assume that a return path is provided for any eddy currents, 
J,  which impinge on the surface of the cavity. Formally, we shall treat the surface 
as a plane of symmetry, where the vertical gradients in J are zero. In  principle, i t  
would not be difficult to extend the analysis to cases where the surface is electrically 
insulated, or where it is curved. In the former case, we would simply have to modify 
the specified body force distribution. However, in the interests of simplicity, we shall 
restrict ourselves to the simpler boundary condition. 

In  $2, we shall consider the distribution of the electromagnetic body force. The 
remainder of the paper is concerned with the hydrodynamic consequences of this 
force. However, before proceeding to solve the general case, defined by figure 1, it is 
useful to consider a much simpler problem: that of forced swirling flow between 
infinite parallel discs. This simpler flow exhibits many of the key features of the more 
general problem, and so it is discussed in some detail in $3. Next, in 534-9, we address 
the problem of forced swirl in an arbitrary axisymmetric cavity, dealing first with the 
interior (core) flow, and then with the boundary layers. Most of the discussion will 
centre on turbulent flow, partly because laboratory experiments fall into this regime, 
and partly because the laminar flow is likely to be unstable for all but low Reynolds 
numbers. To illustrate the general theory, the specific cases of flow in a flat-bottomed 
cavity and flow in a hemisphere are discussed in $$lo and 11. 

Finally, there is a well-known analogy between swirling flow and buoyancy-driven 
flow, the latter being of considerable practical importance in the casting of 
aluminium. In $ 12, we shall show briefly that some of the ideas developed for forced 
swirl are also applicable to buoyancy-driven flow in a cavity. 

2. The time-averaged magnetic body force 
The rotating magnetic field induces both a time-averaged, and an oscillatory 

component of force in the liquid metal. Generally, the inertia of the fluid is 
sufficiently large for the oscillatory component to be ignored, i.e. crB2/pw 4 1. (See 
Davidson & Hunt 1987.) To calculate the time-averaged body force, we shall assume 
that the cavity is housed at the top of a solid metal column, composed of the same 
metal as the pool, as shown in figure 2. 

Provided the motion of the liquid metal is not too great, the magnetic field remains 
unperturbed by the swirl induced in the melt. The body force may then be calculated 
on the assumption that the melt acts as a stationary, solid conductor. Formally, we 
must ensure that the magnetic Reynolds number, uR,,ua, is small. (Here, ,u is the 
permeability of free space, and c is the electrical conductivity of the metal.) This 
condition is usually satisfied in industrial applications (Davidson & Hunt 1987) and 
we shall make this approximation here. 

For simplicity, we shall make one further approximation. We shall limit ourselves 
to low-frequency magnetic fields. Specifically, we shall choose the field frequency, o, 

to satisfy oRi,ua < 3. 
Under this condition, the time-averaged body force may be estimated on the 
assumption that the applied magnetic field is unperturbed by the presence of the 
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conducting column. To within a 4% error, the force is then given by the low- 
frequency result 

(See Dahlberg 1972 and Davidson & Hunt 1987.) Here the subscript 6' indicates that 
the body force is purely azimuthal. 

From a theoretical point of view, there is no particular reason why we should limit 
ourselves to such low frequencies. The theory presented here is readily extended to 
fields which do not satisfy the inequality above. The motivation for this simplification 
is merely that (2) gives us a particularly simple 'model' body force. It also happens 
that many of the experiments which have been performed, with which we shall 
compare our theory, satisfy this restriction. 

With an eye to the inertial force in the Navier-Stokes equation, we shall rewrite 
(2) in the form 

where 51, has the dimensions of s-l, and is given by 

Fe = !$2uwr (2) 

FB = $51; r ,  (3) 

Qp = B(aw/p)'. (4) 

3. Forced laminar flow between infinite parallel discs 
Consider the following problem. Two infinite parallel discs are separated by a 

distance 2w, and the gap filled with liquid metal. The body force Fe is applied to the 
metal, inducing a laminar swirling recirculating flow. This situation is illustrated in 
figure 4. 

Clearly, this geometry is somewhat different to that shown in figure 1 .  
Nevertheless, a review of this simple, if atypical case forms a useful precursor to the 
more complex problem of swirl in a cavity. Specifically, flow between infinite discs 
exhibits many of the key physical features of our more general problem. Moreover, 
it  has a simple analytical solution, and so the details of the flow are particularly 
accessible. 

Some features of this flow have already been discussed by Gorbachev &, Nikitin 
(1973). They were interested in swirl induced by static crossed electric and magnetic 
fields. However, their body force is essentially the same as ours. Their method of 
analysis was approximate, involving an averaging of the inertial terms across the 
boundary layer. Unfortunately, as we shall see, their analysis contains one 
fundamental mistake. 

Note that, in figure 4, we have shown a radially inward flow in the boundary 
layers. Fluid enters the boundary layers at  infinity, flows towards the axis, and then, 
in order to satisfy continuity, gradually drifts out into the core. As explained in the 
introduction, this radial flow at the disc surface is driven by a local imbalance 
between the centripetal acceleration and the imposed, radial pressure gradient. A 
formal example of this type of flow is Bodewadt's problem of rotating fluid over an 
infinite, stationary disc. (See, for example, Greenspan 1968.) 

Consider the flow in the lower half of the gap, 0 < z < w, shown in figure 4. We shall 
look for a solution in the form of the von KarmBn similarity variables. That, is, we 
let the velocity components have the form 

u, = QrF(z / l ) ,  uo = a r G ( z / l ) ,  u, = OlH(z / l ) ,  p = @22r2+p51212P(z/l). 

Here p is the pressure, 1 is a characteristic lengthscale, and 51 is a characteristic 
rotation rate, which we shall take as the rotation rate in the core of the flow. Away 
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FIGURE 4. Swirling flow between two discs. 

from the disc surface, we may take 1 as equal to the gap width, 1, = w, while in the 
boundary layer, we may take I as the von KLrman boundary-layer thickness, 
1, = (v /Q) i .  The ratio of these lengthscales is 

( 5 )  8 = (v /o) ' /w = l b / l c *  

We shall take E to be vanishingly small, and employ the method of matched 
asymptotic expansions to blend the flow in the two regions. 

If we substitute the proposed velocity functions into the Navier-Stokes equation 

u.vu = -V(p/p)+vV2u+l$  

then we obtain three coupled ordinary differential equations valid in both regions : 

F 2 + H F ' - G 2 + 1  = (v/SZ12)F", (6) 

(7)  
H H + P  = ( v /SZ12)H.  (8) 

2FG + G'H = ( v / 9 1 2 )  G" + &2,2/9', 

In addition, continuity requires 
H + 2 F  = 0. (9) 

We shall use subscripts c and b to denote solutions in the core and boundary layer 
respectively. In  the core of the flow, where 1 = 1, = w ,  the governing equations 
become 

F:+H,Fh-GE = -1, W , G , + G ~ H ,  = &?,2/SZ2, H ; + W ,  = 0, 

where the boundary conditions on F,, G,  and H ,  are 

z l l ,  = 1 : H ,  = 0, FA = 0,  GL = 0; 

z / l , + O :  H ,  = e H b ( m ) ,  G ,  = 1. 

Here H b ( w )  is the value of H furnished by the boundary-layer solution, and the 
boundary condition on G,(O) follows from the definition of 9. Formally, 

We now expand F,, G,  and H ,  in polynomials of E ,  and substitute these into the 
governing equations. To leading order in E ,  the core velocity functions are given by 
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That is, the velocities in the core are 

u, = +eH,( co) Qr, 

ug = Qr,  

U, = eHb( CO) O{W - z}. 
The core rotation rate is then given by the azimuthal force balance, which may be 
rearranged to give 

Clearly, the core flow is uniquely determined to within one constant, Hb(co) .  Note 
that the magnetic body force is exactly balanced in the core by the Coriolis force 
~ Q U , ,  and that the angular momentum is independent of x .  We shall see later that 
these emerge as features of our more general problem. We now turn to the boundary- 
layer equations, in order to find Hb(m). Near the disc, (7) takes the form, 

2Fb G, + Gk H ,  = GS + $Q,2/Q2. 

However, we have already shown that the last term on the right-hand side of the 
equation is of order e .  Consequently, magnetic forcing is negligible in the boundary 
layer, and the boundary-layer equations simplify to 

Ft+H,F;-G:+l =F:, 2FbGb+HbGL=G;, Hk+2Fb=O, 

with boundary conditions 

z/Zb = 0:  
z/Z,+00: Fb = 0, G, = 1 ,  H ,  =Hb(w) .  

But this is simply a specification of Bodewadt’s problem of a rotating fluid over a 
stationary disc. Its solution is well documented (see, for example Greenspan 1968). 
The undetermined constant for the core flow is 

F, = G, = H ,  = 0; 

Hb(a)  = 1.349, 
from which we find 

Q = O.516G?,[Qf w2/v$. 

The boundary-layer thickness, defined by the point Ug = 0.9952r, turns out to be 

6 = 8(v/52);. 

To summarize then, forced, swirling flow between two discs has the following 
features : 

(i) the flow field may be divided into a forced, inviscid core, and two viscous, 
unforced boundary layers ; 

(ii) all streamlines pass through both regions, collecting energy in one region and 
losing i t  in the other ; 

(iii) in the core, ue and u, are both independent of z ;  
(iv) the secondary flow in the core is of order 652; 
(v) the applied Lorentz force is exactly balanced in the core by the Coriolis force. 
We shall see that all of these features are reproduced in the more complex and 

general case of swirl in a cavity. 
We might note here that this structure of flow field, involving Ekman pumping 

between a viscous boundary layer and an inviscid rotating core, is also characteristic 
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of some models of oceanic circulation. As in the case above, all of the streamlines in 
these geophysical flows pass through both the core and a boundary layer (Pedlosky 
1979). 

We now return to the approximate analysis of Gorbachev & Nikitin (1973). They 
deduced the expression 

52 = 2-%2,[52,w2/v]k 

The discrepancy between this result and (13) arises from an incorrect application of 
the moment of momentum theorem. Suppose that we integrate the torque due to the 
body force throughout the cylinder 0 < z < w ,  0 < r < R .  Let this integral be denoted 

A ,  = J: 2nr(rE’,) dr dz. 

Then Gorbachev & Nikitin assumed that this is balanced by the shear stress at the 
disc surface. That is 

(7,, r )  2nr dr = A,.  l 
In fact, evaluating i-,, from Bodewadt’s solution shows that 

1 ( T , ~  r )  2nr dr = 0.574,. 

This difference is, of course, because there is an imbalance in the inward flux of 
angular momentum in the boundary layer, and the outward flux in the core. The 
inward flux of angular momentum is 1.574,, while the outward flow of angular 
momentum in the core is 24,. 

Notice that the analysis given above does not address the stability of the boundary 
layers. For some range of Reynolds numbers, the Ekman layer may become unstable 
and separate. In  a similar way, the boundary layers which develop on the cavity wall 
could also separate. However, we will ignore such cases here. 

4. Flow in a cavity: the global balance of energy, vorticity and angular 
momentum 

We now consider forced swirl in a cavity of arbitrary shape. Both laminar and 
turbulent flows will be considered, and we shall assume that the Reynolds number 
is high enough for shear stresses (either laminar or turbulent) to be significant only 
nea,r the boundary. Internal shear layers, or other internal regions of intense 
dissipation, are excluded. Equation ( l ) ,  or its equivalent for turbulent flow, then 
implies that all streamlines must pass through the boundary layer, S, and the flow 
field is as shown schematically in figure 5.  This flow pattern is reminiscent of that 
induced between two concentric spheres, by rotation of the outer sphere (Greenspan 
1968). 

We shall denote the characteristic recirculating velocity in the core by u,, and the 
characteristic (poloidal) boundary velocity by ub. Continuity of mass requires that 
these velocities are related by 

(15) 
One of the conceptual difficulties which arises with this type of flow is the following. 
In the core, the azimuthal vorticity is of the order of oflC - u,/R,, while in the 
boundary layer, the vorticity is of the order of web - ub/6. From (15), we can deduce 

ub 6 N U, R,. 

that 
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FIGURE 5. Secondary flow for forced swirl in a cavity. 

f 

FIGURE 6. Bodewadt’s solution for a rotating flow over a stationary disc. 

However, as the flow emerges from the boundary layer, we might expect that the 
boundary vorticity will be carried with the fluid into the core. But this is clearly 
incompatible with the above scaling. To resolve this dilemma, we must re-examine 
the exact laminar solution given in the previous section. For laminar flow, the 
transport equations for angular momentum, r = u,,r, and azimuthal vorticity are 

The first two terms in (17) represent the familiar advection-diffusion processes. The 
last term is a source (or flux) of azimuthal vorticity, and arises from the spiralling of 
the poloidal vortex lines by the azimuthal velocity (Davidson 1989). If we now 
examine Bodewadt’s solution for the boundary layer on the disc, it will become clear 
what is happening. 

Figure 6 shows some relevant aspects of Bodewadt’s solution. One of the most 
striking features of this flow is that  uo, indicated by the curve G,, undergoes an 
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overshoot, followed by oscillations. This is the key to resolving the dilemma. The 
source term in (17) is proportional to 2GbG;, and this is also shown in figure 6. 
Because of the overshoot in ue, the source term has both positive and negative 
regions. The azimuthal vorticity, we, is proportional to FL. Near the wall it is 
negative. This is a consequence of the no-slip condition, requiring the velocity in the 
wall jet to  fall to zero. Further from the wall, the vorticity is positive. 

Now consider a fluid particle which starts near the disc surface, and subsequently 
migrates up and out of the boundary layer, into the core. Its azimuthal vorticity is 
governed by (17), which, in this context, simplifies to 

Initially, the particle's vorticity is negative, as a result of its proximity to the wall. 
As it  drifts upward, it picks up positive vorticity from the source term, 2Gb Gk. This 
source term is the primary driving force for the boundary layer, and so the vorticity 
eventually changes sign, becoming positive. The reason that this vorticity is not then 
carried out of the boundary layer is that, before leaving, the particle must pass 
through the outer ' blanket' region, where the source term is negative. In  doing so, 
it loses (nearly) all of its vorticity. It is implicit in figure 5 that a similar process is 
occurring in the boundary layer on the cavity wall. 

We now consider the consequences of the conservation of angular momentum. If 
we integrate the azimuthal component of the Navier-Stokes equation over an 
axisymmetric volume V ,  with bounding surface S, we obtain, 

r r r 

where ron is the azimuthal surface shear stress. Let S,  be the surface which surrounds 
the core, but excludes the boundary layer, and So be the cavity surface. Similarly, let 
V,  and V, be the enclosed volumes (see figure 5 ) .  Since 6 6 R,, the volume integral of 
the body force over volume V,  is essentially the same as that over V,. Equation (18) 
applied to the core then gives 

fsc (PT) u * d s  = Jv, (Fe d ~ .  

Similarly, the volume integral of the body force over the boundary-layer region, 
Vb = 6-  V,, is negligible by comparison with the angular momentum flux across S,. 
Consequently, (18) applied to the boundary layer gives 

- fsc pru  * d S  = non * dS. 
$So 

Combining these expressions gives the global angular momentum balance 

S,. (For) dV = fsc (pT) u*dS  = - rTgn. dS. 
+SO 

(19) 

Equation (19) may be used to give a weighted average of the angular momentum 
over the boundary So. Substituting for F,, and using the curvilinear coordinate s, we 
have 
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where s” is the maximum value of s. For turbulent flow, over a smooth surface, the 
seventh-power-law fit to the law of the wall gives the following well known result for 
the wall shear: 

Following Greenspan (1968), we might apply this equation to swirling flow by taking 
u to be uo a t  S,. Substituting into (20) gives 

T, = 0 . 0 2 2 5 ~ ~ ~  (,/us)+. (21) 

a2 r2 Re,+ ds = 1 r2 dV. 
4x 1. 

We shall see later how to estimate Re, = TS/vr, so that (22)  may be used to give an 
average value of r2 over the surface. It is clear from this equation that the global 
balance between the surface shear and the Lorentz body force fixes a (weighted) 
average value for r over the surface. The role of inertial forces, such as the Coriolis 
force, is to determine the distribution of r about this mean. 

Before looking at the local dynamics of the flow, it is useful to consider one more 
global balance. Let us define the (volumetric) mass flux in the boundary layer as q. 
If u, is the tangential component of velocity in the boundary layer, and n the 
distance from the surface, then 

Continuity then requires that,  a t  any given depth z, 

I n  $6, we will see how to calculate the velocity field in the core, so that (23) can then 
be used to evaluate the mass flux in the boundary layer. 

5. Scaling of the velocity field 
Let T,, be the boundary shear stress in the direction of the curvilinear coordinate 

s ,  and ub be the velocity in the boundary layer, comprising of tangential and normal 
components, us and u,. Then the Navier-Stokes equation, applied to the boundary 
layer, gives us the following estimates: 

r ,  z component: ub*Vus - ui/rs  - Itnsl/(pS), 

6 component: ub-Vu, - Iznol/(pS). 

I n  addition, the azimuthal force balance in the core implies 

u, uo - 52; r2.  

Combining these estimates with (15)  gives us 

us - uo - SZfR0(RO/S)~ - (ROTn8/ps)t. 

us - uo - SZ,R,{SZf Ri/v}f (laminar). (25) 

us - uo - SZ, R,{SZ,R~/v}) (turbulent). (26) 

(24) 

We now estimate S by relating the wall shear stress to  the core velocity. When the 
flow is laminar. rn0 is of the order of pvuo/S, and we may eliminate IS to give 

When the flow is turbulent, we may estimate rno using (21) .  This implies 
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52, ( r a w  
FIUURE 7. Angular velocity measured by Robinson in a truncated cylinder a t  radius r = 0.7R0. 

This result implies that the interaction parameter, N ,  is small, of the order of 
N = aB2R,/pu, N Re-he/wR,. 

Next, we turn our attention to the boundary layer. The ratio of the Lorentz force 
to the local inertial force is given by (24) as 

Fer/(pu*Vr)  N SIR. 

It follows that, as in the inhite-disc problem, we may neglect the body force in the 
boundary layer. 

The scaling above should apply equally well to flow in a truncated cylinder, or 
between parallel discs. Indeed, (25) is consistent with the solution to the disc problem 
given in $3 (see (14)). Equation (26) was established for flow in a truncated cylinder 
by Gorbachev & Nikitin (1979), and we shall discuss this in more detail in Q 10. 

Note that (26) predicts an almost linear dependence of ue on B. This is precisely 
what was found by Doronin et al. (1973) and Robinson (1973), who independently 
measured magnetically forced swirl in truncated cylinders. This supports the 
assertion made in the introduction that, for this class of flow, it is the boundary 
layers, rather than dissipation in the core, which controls the flow. 

In  Doronin’s experiments, he found that the interior rotation rate, averaged over 
the inner two-thirds of the cylinder, was proportional to the product of the field 
frequency and the Hartmann number. The constant of proportionality was 4.3 x 
Using the present notation, this relationship may be rewritten as SZ = 6.70,. The 
readings were taken in a range of Reynolds numbers of 104-i05. These measurements 
are consistent with (26). 

Robinson’s experimental data lie in the range Re = ueR,/v = 106-107. His 
measured core rotation rates near the boundary ( r  = 0.7R) are plotted on figure 7 .  It 
can be seen from this figure that the bulk of his data are well approximated by 
SZ = 79, .  Again, this is consistent with (26). (Robinson’s experiment exhibited some 
variation of Fe with z. We have evaluated an effective, or average, SZ, by integrating 
his measured distribution of Fe across the cylinder, both radially and axially.) We 
shall return to a more detailed discussion of Robinson’s data later. 

We might contrast (25) and (26) with the equivalent scalings for magnetically 
forced swirl in an infinitely deep cylinder. As noted in the introduction, this case is 
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relevant to the magnetic stirring of steel. Davidson (1987) showed that, when the 
forcing is restricted to a short length of the column, of order R,, the scaling for both 
laminar and turbulent flow is, uo - 52, R,. 

The reason for the different scaling stems from the lack of any Ekman layer in an 
infinitely deep cylinder. Specifically, the arguments above require that the centripetal 
and poloidal accelerations are of similar magnitudes in the boundary layer, a 
condition which is satisfied if an Ekman layer exists. For an infinitely deep column, 
however, the fluid is free to adopt an axial lengthscale of the order of l / v ,  and it is 
this freedom which allows the global energy balance (1)  to be satisfied. 

Finally, we note that the estimate of T , ~ ,  used to establish these scaling laws, may 
not be appropriate to the rough dendritic surface encountered during solidification. 

6. The interior flow 
The fact that the secondary flow in the core is weak has profound implications for 

the structure of the interior flow. Equation (17), applied to the inviscid core, requires 

U-v (wo/r )  = (a/&) (r2/r4) .  

This equation holds for both laminar and turbulent flows, but its left-hand-side is of 
the order of u-V(w, / r )  - uE/Ri - u$S2/Ri. 

It follows that, in the core, the lengthscale for axial variations in swirl must be of the 
order of (R,/S)2R,. Consequently, the interior swirl flow is of the form 

r = r(r){i + o ( ( q ~ , ) 2 ) ) .  (27) 

This is reminiscent of the Taylor-Proudman theorem (see Greenspan 1968), the 
existence of which is usually established on the a priori assumption of a vanishingly 
small recirculation. The angular momentum equation in the core is, 

U. V T  = Fo r / p .  

Since r is independent of z ,  this reduces to 

u,T’(r) = &52:r2, 

which implies that u, is also independent of z. The axial velocity component can now 
be found from the continuity equation, 

u, = - ( l / r )  (dldr) [ru,] z. (29) 
Equations (27), (28) and (29) show that the interior flow is uniquely determined by 
the single unknown function T ( r ) .  In view of (22), we would expect that r ( r )  is 
determined by the boundary-layer equations, and we shall show later that this is 
indeed the case. 

Equation (28) indicates that, in the core, the Lorentz force is balanced exactly by 
the Coriolis force. The same force balance was evident in the parallel-disc flow, 
discussed in $3. In addition, both u, and r are independent of z which, again, was a 
feature of the parallel-infinite-disc flow. 

In $4 we introduced the concept of the boundary-layer mass flux, q. Using (23), we 
may evaluate q from the core flow. The result is 

where r, is the core angular velocity at the edge of the boundary layer, r, = r (r8) .  
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FIGURE 8. Computation of forced swirl in a deep cylindrical cavity. 

The derivation of (27) does not depend on the detailed distribution of the body 
force, and would apply equally well if F,  varied with z. It is also applicable to flow 
in a cylindrical cavity. This assertion is supported by the laminar computations of 
Kapusta & Zibol'd (1982), who investigated forced swirl in a truncated cylinder. It 
is also in agreement with the experiment of Vives & Perry (1988) and of Robinson 
(1973). All three found that r was independent of x .  In  the latter case, there was 
virtually no detectable variation in u, with x ,  despite an axial variation in F,  of 
around 50 YO. 

Further support for this hypothesis is given by the following numerical experiment. 
We have computed the distribution of swirl generated in a cylindrical cavity by a 
non-uniform body force, F,. The flow was taken as turbulent, and the results are 
shown in figure 8. 

The computations were performed using a finite-difference code, employing a 
power-law differencing scheme and the SIMPLE algorithm. Further details of the 
numerical scheme may be found in Patankar (1980). The Reynolds stresses are 
estimated using the standard (k, €)-model, described by Rodi (1984). Since the 
interaction parameter, N ,  calculated in $5 is very small (around 0.01), we have made 
no allowance for the influence of the magnetic field on the turbulence. The body force 
is that given by (3), but multiplied by a dimensionless, z-dependent function. The 
axial variation in this force, along with the angular velocity on the axis, is shown in 
figure 8. The characteristic angular velocity, SZ,, length, I, and radius, R,, have values 
of 10 rad/s, 1 m and 0.1 m respectively. 

Despite the fact that the magnetic body force is highly localized, the core angular 
velocity is surprisingly uniform (to within 18%) along the length of the column. In 
addition, the secondary flow in the core is small. The peak swirl velocity is 4.5 m/s, 
while the maximum radial and axial velocities are 0.01 and 0.31 m/s respectively. It 
is interesting to note that, even in this relatively deep cylinder, the bottom face still 
restricts the axial lengthscale of the flow. 

We shall now examine the boundary-layer equations and show how to determine 
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r. However, it is interesting to  note in passing that all five characteristics of the 
infinite-parallel-disc problem, listed a t  the end of $3,  have manifested themselves in 
this more general geometry. 

7. The momentum integral equations for the boundary layer 
Nearly all laboratory experiments and industrial applications of magnetic stirring 

have Reynolds numbers in excess of lo4. Consequently, we are interested primarily 
in turbulent flow. There are two options open to us. Either we can perform a full 
numerical simulation, perhaps using an eddy-viscosity model, or else we use an 
approximate technique, such as the momentum-integral method. We shall adopt the 
second of these approaches, as i t  lends itself to a more general form of analysis. 
However, the penalty we pay is a potential loss of accuracy. Consequently, we shall 
compare our approximate analysis with both physical and numerical experiments in 

We shall use the surface arclength, s, and the normal distance from the surface, n, 
as the local coordinates in the boundary layer. I n  addition, we shall assume that the 
surface radius of curvature, Rc, is much greater than 6. Recalling that Fo may be 
neglected in the boundary layer, the angular momentum equation is 

$ 10. 

. 

If we restrict ourselves to  regions where rs % 6, then ros is a second-order quantity 
and may be omitted from (31). The poloidal momentum equation is 

V H B  1 a i a  
cos $-+ - - [rcr,,] +- - [ r ~ , , ] ,  

r r as r an 

where croB and crss are normal stresses. Again, provided we exclude the region near the 
axis, we may simplify this equation by retaining only the pressure contribution to 
the normal stresses. 

These equations may be integrated through the boundary layer. Making use of the 
continuity equation, 

l a  
[ru,] +- - [ru,] = 0, v . u  = -- i a  

r as r an (33) 

the integrated equations of motion may be written in the usual form (see Greenspan 
1968) 

Here ro and 7, are the boundary shear stresses, taken as positive in the direction of 
0 and s. Again, these equations are not, in general, valid near the axis. 

At this point i t  is worth considering the consequences of dropping the shear stress 
T ~ ,  from (34). We have justified this by limiting our solution to rs $ 6. Consider now 
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a region near the axis, where the cavity surface is (almost) flat and horizontal. The 
neglected term in (34) is 

where vt is an eddy viscosity. This shear stress arises from differential rotation 
between adjacent cylindrical surfaces within the fluid. It does not rely on the 
proximity of the boundary, and its magnitude is proportional to the radial gradient 
in angular velocity. In contrast, the shear stress that we have retained in (34) is 

(r2/p)7eC vt r2(uo/6). 

This arises directly from differential rotation between the fluid and the boundary. 
Clearly, our neglect of T,, is valid when rs % 6. However, it  is precisely this neglected 
shear stress which, near the axis, guarantees that u, varies linearly with r .  If we 
throw out this term, we can no longer ensure that the angular velocity is constant 
near the axis. Consequently, a solution of the boundary-layer equations (34) and (35) 
will not, in general, predict u, cc r as r + 0. Rather, there will be an inner region near 
the axis where the solution breaks down, and rr0 cuts in to smooth out any potential 
singularity in u,/r. We shall refer to this inner region, of size r - 6, as the 
concentrated viscous core. 

Let us now return to our boundary-layer equations. Following the usual procedure, 
we assume that we can approximate r and us by 

r= ref(n/S), US = Gsg(n/6), 

where 6, is a characteristic poloidal velocity in the boundary layer. From these 
universal profiles, we may deduce 

Here xl, xz and x3 are constants which may be evaluated from f and g.  Of course, 
there is a certain arbitrariness in the choice off and g, and so we cannot guarantee 
that these constants will be accurately established. For turbulent flow, we might 
follow von KarmBn (1921), and take f and g to be given by the seventh-power law, 

f(5) = @ 9  s(5) = @(1-5). 
In this case, the constants are 

x1 = Q, xz = 1.242, x3 = !. 
Clearly, one weakness of the momentum integral approach is the uncertainty in xl, 
xz and x3.  However, we shall see in 0 11 that, typically, the predictions of our analysis 
are insensitive to these constants. Substituting for the integrals in the boundary- 
layer equations gives 

It remains to specify the surface shear stresses. For turbulent flow over a smooth 
surface, we follow Greenspan and use (21). (Of course, this may not be appropriate 
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for the dendritic interface in the sump of a caster.) Using this form of the law of the 
wall, the azimuthal shear stress becomes 

r," rS /p  = 0.0225r: ~ q f ,  (38) 

where, as before, Re, = I'cS/vr,. Evaluation of r, is slightly more complex. Again, 
following von Karman (1921), we might take 

which gives us 9 rc 1 5 = 0.0551 - -Re;a. 
P 2nr, 6 

Equations (38) and (40) assume implicitly that ue is the dominant velocity in the 
boundary layer. We shall see in 5 11 that, typically, this is indeed the case. 

For laminar flow, one might follow the strategy of von Karmin (1921) and expand 
f and g as polynomials in n/6. I n  any event, we may substitute for the shear stresses 
in (36) and (37), using either the turbulent relations (38) and (40), or else suitable 
laminar approximations. 

The resulting boundary-layer equations contain only three dependent variables : 
r,, 6 and q. However, we have already related the boundary-layer mass flux, q,  to  rc 
through the interior flow solution. This relationship is given by (30). Consequently, 
we have two, coupled, differential equations for rc and 6. For any given surface shape 
(r,(s), %,(a)), these may be integrated to  furnish r c ( r ) .  The interior flow solution then 
follows from (28) and (29). 

8. The governing equations for the swirl distribution and boundary-layer 
thickness 

equations. Using (30), we obtain 
We now eliminate the boundary-layer mass flux from the momentum integral 

Note that 6 appears in (41) only to the extent that  i t  is required to  evaluate Re,, and 
hence re. If Re, were known, then this equation could be integrated to determine 
r c ( r s ) ,  without reference to the poloidal equation. Equation (42) therefore takes on 
the subsidiary role of determining the intermediate variable, 6. 

We shall now attribute some physical significance to the terms in (41). If we 
integrate this equation all the way along the surface, from s = 0 to the axis, then the 
first term integrates to zero and we obtain, 

However, the left-hand side may be simplified using the relationship, 
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FIGURE 9. Physical interpretation of the azimuthal boundary-layer equation. Equation (44) 
represents the conservation of angular momentum for the shaded region. 

to give (43) 

This is simply (20), representing the global balance between the Lorentz force and 
the surface shear stress. The above integral relationship effectively fixes the 
(weighted) mean value of rc on the surface. Following the line of argument given in 
$4, we would then expect the first term on the left-hand side of (41) to determine the 
distribution of rc about this mean, and to be related to the advection of angular 
momentum in the core. In fact, it is not difficult to show that (41), integrated from 

where A* and V* are defmed in figure 9. Equation (44) therefore represents 
conservation of angular momentum applied to the shaded region shown in figure 9. 

9. A simplified swirl equation for turbulent flow 
We shall now focus exclusively on turbulent flows, partly because these are the 

most important from a practical point of view, and partly because the laminar flow 
is likely to be unstable for all but low Reynolds numbers. The azimuthal boundary- 
layer equation is 

(45) 

where K is a dimensionless friction coefficient, 

K = O.O225(~r,/I'~ S)i = 0.0225Re3. 

We shall now justify treating this friction coefficient as a constant. Since r, and 8 are 
both functions of s, K will also vary along the surface. However, in view of the +-power 
appearing in the definition of K ,  it is certain that the variation in K will be far less 
marked than the variation of the quantity it multiplies, r:. For example, we would 
expect that the boundary layer will thicken in the direction of the flow, while I", will 
decrease with increasing s. In  that case, K will vary with s at a rate somewhat less 
than @. Consequently, it seems consistent with the level of approximation in this 
analysis, and in particular with the uncertainty in the magnitude of xl, to treat K as 
a constant. We propose, therefore, to evaluate K at s = 0, and thereafter treat it as 
fixed. 
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We now evaluate K using (41) and (42) applied at  = 0. Let us assume that the 
surface is vertical at s = 0, so that 

dr,/ds = -cos$ = --/R,+ ... , 
dz,/ds = sin$ = 1 - s2 / (2RE)+ ... , 

where R, is the radius of curvature of the surface at  s = 0. Then (45) reduces to 

Qp2 x1 r," rc(r,) = - -. 
2 K  r, 

If we now substitute this into (42), we find that the initial boundary-layer thickness 
is 

6 / (Ro  R,); = 3 . 6 1 ~ / ~ ~ .  

This expression can then be arranged to give the desired result: 

K = 0 . 0 3 7 2 { R 0 / R , } ~ ( T , / ~ } ~ ~ ~ ~ .  (46) 
Our problem of calculating the swirl distribution has now been reduced to integrating 
(45). To simplify the algebra in the subsequent sections, it is convenient to introduce 
the scaled variable 

~ ( s )  = ( ~ K / I R ~ R : )  r: 
and the (known) geometric function 

f ( s )  = - z ,  r: (dr,/ds) Ro3 I-'. 
Then the boundary-layer equation may be written in the more compact form 

Integration of this second-order equation for a given geometry function is 
straightforward. We shall consider two specific examples, corresponding to 
cylindrical and hemispherical geometries. 

10. Example 1 : swirl in a flat-bottomed cavity 
As our first application of the theory, we shall consider the geometry shown in 

figure 10. The cavity has a flat base and steep sidewalls ( t  < R,,). The flow emerges 
from the bottom boundary layer, picks up angular momentum in the core, and 
recirculates back via the sides. We shall divide the flow field into three distinct 
regions: the core, the sidewalls, and the bottom boundary layer. The angular 
momentum flux (per unit mass) out  of each region will be represented by fl. f 2 ,  and 
f3, as shown in figure 10. I n  addition, we shall denote the net magnetic moment 
applied to the core by A,, 

and t,he torque exerted by the shear stress on the base and on the sidewalls by 

(49) 
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We have already established that the magnetic force may be neglected in the 
boundary layers. Since we have assumed that the sidewalls are steep, conservation 
of angular momentum requires that the difference between fl and fz must be equal 
to T,. Similarly, 5$ is equal to the difference in fz and f3. In fact, all of the quantities 
defined above may be related to fl in the following way: 

rz = (1 -x,)rl, 
r3 = r1 - df, 
Tb = d,-x1 f1, (53) 

T, = x1 rl. (54) 

(51 1 
(52)  

(The first of these equations follows from the definition of XJ.) These global 
relationships provide the boundary conditions needed to match the flows in adjacent 
regions. We shall now determine fl by application of the boundary-layer equation 
(47). Applied to the base of the cavity, this equation becomes, 

I 

I A 
I 

Core I Corner 

I 

- - -  --- % “t- L 

We now introduce the auxiliary function, 

Url) = U(7)  drl, 7 = r / R .  

~“($74-v)  = 2x173v’. 

V =  (1-8 3x1) b14. 
u= (1-8 3x1) V/RrJ3. 

In terms of V ,  our differential equation is 

The solution to this second-order equation, which satisfies V(0)  = 0 and V‘(0) = 0, is 

It follows that U is given by 

However, we have not yet considered the boundary condition at the sidewall, which 
is furnished by (50) and (54) : 

= 2 R K l r : ( & )  = Xi a(&) rc(&)y 

and which, when q is eliminated, gives 

2nKJr:(%) = Xl{ffQ,Z JR3 r c ( ~ o ) / m ~ o ) .  
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Physically, this boundary condition ensures that the bottom boundary will accept 
the fluid emerging from the sidewalls. In  terms of U ,  this boundary condition may 
be rewritten as 

ZU'(R,) = 2x1. 

Our simple cubic expression for U will satisfy this additional boundary condition 
only if 

x1 = 3Z/(2R0+81). 

Consequently, we shall choose x1 on this basis. Consider, by way of an example, the 
case where Z = R,. Then we require x1 = 0.3, and the distribution for r, becomes 

The predicted T; dependence for r, seems somewhat counter-intuitive. Certainly, it  
implies the existence of a concentrated viscous core, where our solution breaks down. 
However, we shall see later that just such a variation in angular velocity manifests 
itself in Robinson's (1973) experiments. 

Substituting for K ,  we find that the peak core angular momentum is given by 

fc = 1.98SZfZiR! [SZ, ZR,/v]t [R,/Z]h. (56) 

The dependence of r, on the radius of curvature, R,, is so slight that we may 
reasonably neglect the term involving RJZ. When this is discarded, the scaling in (56) 
is that established in $5.  

The boundary-layer mass flux may now be determined using (30). The flow of 
angular momentum out of the core is found to be 

fl = 2.664,. 

The remaining angular momentum fluxes, as well as the shear stress integrals, are 
given by (51)-(54). These yield 

f2 = 1.874,, f3 = 1.664,, Tb = 0.204,, T, = 0.804,. 

Note that four-fifths of the applied magnetic torque is resisted by the sidewalls, and 
only one-fifth by the base. Also, the flux of angular momentum out of the interior 
region is almost three times that generated by Fo in the core. 

Gorbachev & Nikitin (1979) have also analysed forced swirl in a truncated 
cylinder. Their analysis is based on the flow between infinite, parallel plates, and, like 
us, they employed a momentum integral approach in conjunction with a seventh- 
power law. Their estimate of the core rotation rate is 

!2 = 8.210, [SZ, ZR/v]i (R/Z)-i. 

Although this scaling is the same as ours, their estimate of the core rotation is 
substantially higher. Presumably, the discrepancy arises from the way the sidewalls 
are handled. 

If we neglect the surfaze discontinuity a t  ( r  = R,, z = I ) ,  we may compare our 
prediction of peak swirl, r,, with experimental data taken in a truncated cylinder. 
Perhaps the most comprehensive measurements were taken by Robinson (1973), who 
made velocity measurements over a wide range of field strengths, from 20 to 
530 Gauss. He used a Pitot tube, a moving vane, and hot-film probes to  measure 
velocity. As a result of the effects of probe drag, there is a variation of - 30 % between 
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FIGURE 11. Comparison of the theoretical prediction of (a) peak swirl (and b )  angular velocity in 
a truncated cylinder with the measurements of Robinson (1973): 0 ,  experiment; -, theory. 

measurements taken with different instruments. The most reliable results were 
obtained using the rotating vane, which was designed specifically to minimize drag 
on the liquid mercury, and it is these results that we shall consider. 

Two difficulties arise in making a direct comparison. They both arise from the fact 
that we have used an idealized body force, which does not conform to the actual force 
distribution measured by Robinson. Firstly, there was an axial variation in Fo of 
around 50% in Robinson’s experiment. To correct for this, we have integrated the 
measured force distribution throughout the cylinder, and equated this to the 
magnetic torque induced by our idealized force. This renders an effective, or average, 
value of 0,. However, the force distribution was only measured to within an accuracy 
of _+25%, so that, a t  best, we can only estimate Q, to within _+12%. The second 
difficulty is that there were small components of force Fr and F, present in the 
experiment. These could well give rise to a recirculation of similar magnitude to that 
generated by the boundary layers. 

Theory and experiment are compared in figures 11 (a )  and 11 ( 6 ) .  The first figure 
shows the variation of peak swirl with forcing, 52,. The potential error in our estimate 
of 52, is represented by the shaded region around the theoretical curve. The theory 
tends to overestimate the swirl at  large Of, and underestimate the swirl a t  low 0,. On 
balance, however, the magnitude is reasonably well predicted. The difference in 
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FIQURE 12. Comparison of computed and predicted swirl in a truncated cylinder 
of unit aspect ratio. 

gradient of the two curves is indicative of the fact that Robinson's data more nearly 
follow a linear relationship between 52 and B, rather than the +'-power law suggested 

Figure 11 ( b )  shows the radial distribution of angular velocity, for a range of values 
by (56). 

of 52,. It is clear that our prediction of 

u6/r cc r-+ 

also manifests itself in Robinson's data. 
Finally, we have performed a full numerical simulation of forced swirl in a 

truncated cylinder, using the same general purpose (k, €)-model introduced in $6. As 
with the computation shown in figure 8, we have taken 52, = 10 rad/s and R, = 0.1 m. 
This time, however, the cylinder is given a half-length of I = 0.1 m. Both the 
computed and predicted distributions for r, are shown in figure 12. The peak swirl 
seems to be reasonably well predicted, but there is some discrepancy at  smaller 
values of r. This may well be due to the influence of the concentrated viscous core. 

11. Example 2: flow in a hemisphere 

of some practical importance in the context of casting. 

we may replace the surface coordinate, s, by R,a, and (47) becomes 

We now turn our attention to flow in a hemisphere, which, as explained in $1, is 

Let a be the angle between the normal to the boundary and the horizontal. Then 

where f(a) = sin2acos3a. (58) 

The global torque balance, (43), requires that r2 U(a) da = &. (59) 
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FIGURE 13. (a) Matched expansions for rc for forced swirl in a hemisphere. (The exact solution 
is shown as the dashed line.) ( b )  Secondary flow induced in a hemisphere. 

As a prelude to giving an exact solution of (57), we shall find an approximate solution 
by expanding U about a = 0 and a = in, and then matching the expansions. The 
expansion about a = 0, which satisfies (57) is 

U, = mxl -xl a' +&xl[l 1 - 8 /m]  a4 + . . . , (60) 

where m is a constant to be determined by the matching process. 

which satisfies (57) is 

We shall retain only third-order terms in (60) and (61). If we join the two expansions 
at  q5 = 0.342, then the global constraint (59) is satisfied, and the gradient of r , ( r )  (or 
@(a)) is reasonably continuous across the join. The matched expansions are shown 
in figure 13(a), in the form of I',(r) versus r .  The required value of m is 1.02. 

A numerical solution of (57) was also obtained as follows. First, we integrate the 
equation, and then express the result as a second-order equation in V($) ,  the integral 
of U($) .  (The definition of V is the same as that used in 9 10, but with $ replacing 7.) 
This new equation can be integrated from # = 0, subject to V(0)  = 0 and V'(0) = 0. 
In practice, (61) is used for the initial condition to avoid singular behaviour at the 
axis. The result is shown on figure 13(a), and is similar to the matched expansions. 

Note that (61) is, to first order, identical to the expansion of U about r = 0 given 
in the preceeding section. Of course, the r3 dependence must break down near the 
axis, where the boundary-layer equations are no longer valid, and a concentrated 
viscous core appears. From the exact solution of (57), the maximum angular 
momentum turns out to be 

As suggested in $7, we will take x1 = 5. Then the expansion about a = in, or # = 0, 

(61) u + - 6  - 9# 31-2 [ ,$2+25.2#4+ ...]. 

r c ( R o )  = 0.418QfR;/(2~);. (62) 

r,(Ro) = 1.9652,~; [ 5 2 , ~ ; / ~ ] : ,  (63) 

Substituting for K ,  using (26), yields 

which exhibits the expected scaling between r, and 52,. 
The secondary flow in the core is determined by r c ( r ) ,  through (28) and (29). The 
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shape of this flow is shown in figure 13(b), where equidistant values of the stream 
function are plotted. The recirculation is largely confined to the outer part of the 
hemisphere, with the eye of the eddy lying a t  CL = 35'. 

The mass flux in the boundary layer is determined by (30). This has a maximum 
value at  the eye of the eddy, given by 

One concern with the momentum integral approach is the arbitrariness with which 
x1 can be chosen. It is of interest therefore, to determine the sensitivity of the 
predictions to the magnitude of xl. Consequently, we have re-integrated (57) for the 
value of x1 = 0.3. I n  this case, the peak swirl is predicted to be 

3rc(R0) = 1.980,Ri [52,R3v]i. (65) 
Fortuitously, the difference in predicted swirl is small. For a virtual doubling of xl, 
we obtain only a 1 % difference in the predicted value of rc (Ro) .  

12. Analogy to buoyancy-driven flow in a cavity 
There is a well-known analogy between swirling flow and thermally driven motion. 

In  both cases, vorticity, oo, can be generated directly in the core of the fluid, thus 
creating poloidal motion. For a swirling flow, this process is described by (17),  and 
is a result of the swirl velocity spiralling its own vortex lines. For buoyancy-driven 
flow, the source of vorticity is a radial temperature gradient (Bjerkne's theorem). We 
shall exploit this similarity to show that many of the features established in 94 have 
a direct analogy in thermally driven motion. I n  the interest of simplicity and brevity, 
we shall restrict ourselves to laminar flow, and only pursue the problem in a 
qualitative sense. 

Consider the steady, axisymmetric flow of liquid metal shown in figure 14. The wall 
of the cavity is maintained a t  a reference temperature T,, while the central part of 
the upper surface is held a t  a temperature T,. The outer, annular region of the top 
surface is insulated. If T, is higher than TM, then the flow is as shown, falling at  the 
walls and rising up through the core. We shall assume that the core Reynolds number 
is high. However, we shall take the Prandtl number to be correspondingly small, so 
that the PBclet number is of order one. 

The problem specified above represents a zero-order model of the liquid-metal pool 
in an aluminium caster. The top surface must be maintained at temperature T, by a 
heat source, and in the case of a caster, this heat is supplied by the incoming melt 
(whose momentum we ignore). Thermal flows are known to exist in this situation, 
and these flows have a significant effect on the metallurgical structure of the ingot 
(Vives & Perry 1988). 

We shall assume that density changes are small, and so the velocity field is 
solenoidal (the Boussinesq approximation). The equation of motion for the fluid is, 

Du/Dt = - V ( P / p )  -gP( T -  TM) k + U V ~ U  (66) 
and the corresponding transport equations for vorticity and heat are 
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FIQURE 14. Thermally driven flow in a cavity. The upper surface is maintained at temperature 
T,, and the walls at the lower temperature of T,. Cold fluid falls near the walls. 

, I  

Here a is the thermal diffusivity and /3 is the expansion constant, 

There is an analogy between (67) and (17),  with the radial temperature gradient 
playing the role previously adopted by the axial gradient in angular momentum. 
Consequently, we might anticipate that, by analogy with (27), the core will be 
thermally stratified, with the core temperature, T,, given by 

T,  %.Te(2). 

That this is so has been shown for certain geometries by the method of matched 
asymptotic expansions (Yang 1987). However, we shall show here that the same 
conclusion can be reached more concisely by the method established in $4 for swirl 
flows. Following the logic of $4, we integrate (66) around a closed streamline to give 

ga$( T- TM )  dz = u$V~ZJ. dr. (70) 

In view of the assumed smallness of u, there are three possibilities: ( a )  all the 
streamlines pass through a boundary layer; ( b )  the core is thermally stratified in 
accordance with (69); (c) the core is isothermal. The last of these options is in 
accordance with Batchelor’s theorem of high-Reynolds-number closed-streamline 
flows. (In essence, slow diffusion of heat between streamlines homogenizes the 
temperature.) We shall exclude this possibility for the moment, and concentrate on 
options (a) and ( b ) .  

It is straightforward to show that if either one of ( a )  or ( b )  holds, then the other 
must follow. The proof is as follows. Suppose ( b )  holds but (a) does not. Then (68) 
requires 

u, T(2) = a!P(z), (71) 

which, by virtue of the sloping boundary, requires that ( a )  must hold after all. We 
may also show that the converse is true by applying the scaling arguments of $5.  For 
convenience, we shall take the datum for the core temperature as TM. If 1 is a 
characteristic axial lengthscale in the core, then the boundary-layer version of (66) 
requires 

4Il gPT,.  



696 P .  A .  Davidson 

FIGURE 15. A comparison of the isotherms for thermally induced flow with the 
constant-angular-momentum lines of forced swirl. 

In  addition, if all the streamlines pass through the boundary layer, continuity gives 
us 

u, - u,s/z. 

These estimates allow the transport of vorticity in the core to  be assessed: 

u-V(W,) - B / ~ T , ~ ~ / P ,  

from which, with the aid of (63), we deduce 

aT/ar - T, 62/13. 

Consequently, provided the vertical lengthscale, 1, is greater than 6, the core is indeed 
thermally stratified, according to 

Thus it appears that  either the core must be of the Batchelor-type or else it satisfies 
both conditions (a)  and ( b ) .  A review of the experimental data for confined 
convection suggests that  often the core is indeed stratified, rather than isothermal. 
This is shown most strikingly in the experiments of Elder (1965), who investigated 
flow in a two-dimensional slot driven by a temperature difference between the 
sidewalls. For a high Rayleigh number, the flow is characterized by a combination 
of a stratified core and thermal wall jets. Elder’s experiments were carried out for a 
high Prandtl number. We are concerned with liquid metal flows where the Prandtl 
number is low. Yet it appears that a similar behaviour can occur there. Vives & Perry 
( 1988) looked at natural convection in a cylindrical annulus during solidification and, 
again, a thermally stratified core was found. The same core behaviour manifested 
itself in the numerical experiments of Flood et al. (1989), who looked at  flow in the 
liquid pool of a caster. 

We might speculate, then, that the flow shown in figure 14 will be characterized 
by a quiescent, stratified core, and by thermal wall jets, within which the 
temperature adjusts from the core distribution to the wall temperature. The analogy 
between thermal stratification and swirling flow is emphasized in figure 15, where 
isotherms are compared with the constant-r lines of 5 11. The role of the thermal jets 
is to carry hot fluid away from the top surface, and allow it to cool on the cold, curved 
boundary. I n  the core, there is a competition between conduction of heat and a weak 
uniform updraught of cool fluid. 

Analytical solutions for thermal wall jets on an inclined surface are well known 
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(see, for example, Prandtl 1952), and their analogy to Ekman layers is well 
established (Turner 1973). We might note that Prandtl’s solution for a thermal wall 
jet exhibits the same overshoot in temperature as Bodewadt’s solution shows in the 
r-profile. 

The idea of a thermally stratified core seems to have come first from Gill (1966), 
who, following Elder’s experiments, analysed high-Reynolds-number flow in a slot. 
Gill used the method of matched asymptotic expansions, and showed that in the core 
T = T(z) .  Moreover, for Prandtl numbers of order one or greater, where conduction 
in the core may be neglected, he showed that the core velocity was purely horizontal. 
In this analysis his thermal jets both eject and entrain fluid in such a way that one 
jet feeds the other via the core. The process is reminiscent of matching the Ekman 
pumping between parallel discs rotating at different speeds. 

Returning to the flow depicted in figure 14, we shall now sketch out how the 
velocity and temperature fields may be calculated, albeit approximately. Our 
motivation for doing this is largely to show that the procedure is the same as for the 
swirling flow problem, thus reinforcing the analogy. Firstly, we use (71) to determine 
the boundary-layer mass flux : 

@ = -anr,2 TL(z)/Tc(z). 
Next, we integrate (66) and (68) across the thermal boundary layer, whose thickness 
is designated by 6. This gives results analogous to (34) and (35): 

-${r,lu,(T,-T)dn 

A{r,lu,2dn} ds = gBr,sin$ 

We now introduce the (constant) parameters, x4 and xs, defined in precisely the same 
way as x1 and x3,  but with T replacing r or r2, as appropriate. We can then 
substitute for the boundary-layer mass flux, to give 

These equations may be integrated for Tc(z) and S(z) for any given shape of cavity. 
The magnitude of the velocity in the thermal wall jet is of the order of 

u; - gpT, 1. 

For the casting of aluminium, typical parameter values give a boundary-layer 
velocity of - 0.1 m/s. We might compare this estimate with the velocity induced by 
a rotating magnetic field. Suppose we have a magnetic field of 50Gauss at a 
frequency of 1 Hz. Then from (4), (63) and (64), we find that u, - 0.5 m/s and 
ub - 0.1 m/s. Therefore, in this example, the boundary-layer flows induced by 
buoyancy and magnetic stirring are similar in magnitude, and in the same direction. 
Clearly, one of the effects of rotary magnetic stirring in a caster is to augment the 
thermally induced flow near the boundary. We might speculate, therefore, that the 
influence of magnetic stirring on the as-cast structure of the ingot will be similar to 
that of buoyancy. 
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1 3. Conclusions 
There is a considerable amount of direct and indirect evidence to support the flow 

structure proposed in $95 and 6. The z-independence of the core swirl is most 
dramatically illustrated by the numerical experiment of 96, and is evident in 
Robinson’s data. The scaling laws established in 95 are consistent with the results of 
Doronin et al. and Robinson, and coincide with the exact analysis given in $3 for 
parallel-disc flow. 

The main difficulty arises in handling the boundary-layer equations. We have 
resorted to a momentum-integral approach, as it allows us some generality in the 
development of the analysis. Another simplification arises from treating the friction 
coefficient, K ,  as constant, justified by the (asserted) weak dependence of K on 
position. 

The end product of this analysis is (47), which may be integrated to give the swirl 
distribution in an axisymmetric cavity of arbitrary profile. This simple second-order 
ordinary differential equation has considerable generality, but has embedded in it the 
approximations outlined above. Consequently, its utility can only be established by 
comparing its predictions with experimental data. One such comparison is made in 
$10, where our governing equation is applied to flow in a flat-bottomed cavity, and 
the predictions compared with Robinson’s experimental data. Unfortunately, we can 
find no experimental data with which to compare the analysis of $11, for flow in a 
hemisphere. 

The extension of these ideas from swirling flow to thermal convection is a natural 
one. However, we have only pursued this in a qualitative sense, establishing the 
existence of a stratified core (as Gill predicted), and sketching out a procedure for 
calculating the flow. 

I would like to thank Dr F. Boysan for his assistance with the numerical 
computations. The code used was FLUENT, made available by FLUENT Europe. 
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